

MBZ-003-1162001 Seat No. _

M. Sc. (Sem. II) (CBCS) Examination

April / May - 2018

CMT - 2006 : Mathematics

(Algebra -II) (New Course)

Faculty Code: 003

Subject Code: 1162001

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All the questions are compulsory.

- (2) Each question carries 14 marks.
- 1 Answer following short questions:

 $7 \times 2 = 14$

- (i) For a ring R, define R-sub module of an R-module M.
- (ii) Let M be an R-module. In std. notation, prove that $(-a)m = a(-m), \forall a \in R \text{ and } \forall m \in M.$
- (iii) Let $f(x) = x^3 + 6x^2 + 7x + 8$. Prove that f(x-2) is an irreducible polynomial. Is f(x) irreducible? (Y/N)
- (iv) State Eisenstein Criterion.
- (v) For the field extension ${}^R|_Q$, write down two elements of R-Q, which are algebraic over Q and write down four elements of R, which are not algebraic over Q (they are transcendental elements over Q).
- (vi) Write down the minimal polynomial of -i over Q.
- (vii) Define splitting field.

2 Attempt any two:

 $2 \times 7 = 14$

- (a) Let ${}^E|_F$ and ${}^K|_E$ both are algebraic extensions. Prove that ${}^K|_F$ is also an algebraic extension.
- (b) Prove that $Q(\sqrt{2}, \sqrt{3}, \dots, \sqrt{p}, \dots) | Q$ is an infinite algebraic extension.
- (c) Let $p(x) \in F[x]$ be an irreducible polynomial and degree of p(x) = n. Let $E_{|F|}$ be an extension such that $\alpha \in E$ and α is a root of p(x). Prove that $F[\alpha] = F(\alpha), [F(\alpha):F] = n$ and $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is a basis of $F(\alpha)$ over F.
- (d) Prove that every finite extension is an algebraic extension.

3 Attempt any one:

 $1 \times 14 = 14$

- (a) State and prove primitive element theorem.
- (b) Let ${}^E|_F$ and ${}^K|_E$ both are finite separable extensions. Prove that ${}^K|_F$ is also a finite separable extension.
- (c) Define algebraically closed field. For a field K, prove that following statements are equivalent:
 - (1) K is an algebraically closed field.
 - (2) If $p(x) \in K(x)$ and p(x) is an irreducible polynomial, then degree of p(x) is 1.
 - (3) Any $f(x) \in K[x]$, with degree of $f(x) \ge 1$, f(x) can be split into linear factors in K(x).
 - (4) Any $f(x) \in K[x]$, with degree of $f(x) \ge 1$, K contains all the roots of f(x).

4 Attempt any two:

 $2 \times 7 = 14$

- (a) Let $f(x) \in F[x]$ be an irreducible polynomial. Prove that α is a multiple root of f(x) if and only if f'(x) = 0 (All the coefficients of f'(x) are multiple of char F.)
- (b) Let char k = p > 0 and $f(x) \in k[x]$ be an irreducible polynomial. Prove that f(x) has a multiple root if and only if $f(x) = g(x^{\rho})$, for some $g(x) \in k[x]$.
- (c) Let $f: M \to N$ be an R-homomorphism of R-modules. Prove that Ker f and f(M) are R-sub modules of M and N respectively.
- (d) Prove that $G(^{C}|_{R})$ is a group of order 2.
- (e) Let F be a finite field. Prove that $F^* = F \{0\}$ is a cyclic group under multiplication.

5 Attempt any seven:

 $7 \times 2 = 14$

- (1) Define F-automorphism.
- (2) Give an example of a finite field F such that |F| is not a prime.
- (3) Write down all the roots of the polynomial $x^4 2 \in Q[x]$.
- (4) Give definition of a finite field extension. Also give an example of a finite field extension.
- (5) Write down the minimal polynomial of $\cos\left(\frac{2\pi}{p}\right) + i.\sin\left(\frac{2\pi}{p}\right)$ over Q.
- (6) Write down definitions of a prime field and give an example of a prime field.

- (7) Write down definitions of separable polynomial, separable element and separable extension.
- (8) State first fundamental theorem of R-homomorphism.
- (9) Define exact sequence of R-modules and R-homomorphisms.
- (10) Define cyclic field extension and give an example of finite cyclic extension.